Data Manipulations
Overview
Core Manipulation Techniques
Data Cleaning
Whitespace Normalization
Character Encoding
HTML/XML Cleanup
Noise Removal
Data Formatting
Markdown Normalization
Date and Time Standardization
URL Normalization
Text Transformations
Case Normalization
Punctuation Handling
Language Processing
Abbreviation Expansion
Metadata Enrichment
Source Metadata
Content Classification
Semantic Metadata
Structural Metadata
Temporal Metadata
Advanced Manipulations
Entity Extraction
Relationship Mapping
Intent Classification
Sentiment and Tone
Language Detection and Translation
Content Enhancement
Summary Generation
Title and Heading Extraction
Code Extraction and Annotation
Link Processing
Deduplication
Exact Duplicates
Near Duplicates
Version Consolidation
Data Validation
Schema Validation
Content Validation
Metadata Validation
Filtering and Exclusion
Content-Based Filtering
Source-Based Filtering
Time-Based Filtering
Optimization Techniques
Embedding Optimization
Query Matching Optimization
Hierarchical Structuring
Implementation Workflow
1. Data Ingestion
2. Cleaning Pipeline
3. Enrichment Pipeline
4. Optimization Pipeline
5. Quality Assurance
Best Practices
Processing Order
Idempotency
Scalability
Monitoring
Common Pitfalls
Over-Processing
Metadata Bloat
Loss of Context
Inconsistent Processing
Tools and Libraries
Text Processing
Data Cleaning
Metadata Extraction
Next Steps
Last updated

